Adaptive importance sampling in least-squares Monte Carlo algorithms for backward stochastic differential equations
نویسندگان
چکیده
We design an importance sampling scheme for backward stochastic differential equations (BSDEs) that minimizes the conditional variance occurring in least-squares Monte Carlo (LSMC) algorithms. The Radon-Nikodym derivative depends on the solution of BSDE, and therefore it is computed adaptively within the LSMC procedure. To allow robust error estimates with respect to the unknown change of measure, we properly randomize the initial value of the forward process. We introduce novel methods to analyze the error: firstly, we establish norm stability results due to the random initialization; secondly, we develop refined concentration-of-measure techniques to capture the variance of reduction. Our theoretical results are supported by numerical experiments. ∗Speaker †Corresponding author: [email protected] sciencesconf.org:montecarlo16:111423
منابع مشابه
Stratified Nested Regression Monte-Carlo scheme with large scale parallelization
We design a novel algorithm based on Least-Squares Monte Carlo (LSMC) in order to approximate the solution of discrete time dynamic programming equations, like Backward Stochastic Differential Equations (BSDEs). Our algorithm allows massive parallelization of the computations on many core processors such as graphics processing units (GPUs). Our approach consists of a novel method of stratificat...
متن کاملAdaptive Weak Approximation of Stochastic Differential Equations
Adaptive time-stepping methods based on the Monte Carlo Euler method for weak approximation of Itô stochastic differential equations are developed. The main result is new expansions of the computational error, with computable leading-order term in a posteriori form, based on stochastic flows and discrete dual backward problems. The expansions lead to efficient and accurate computation of error ...
متن کاملA Stochastic algorithm to solve multiple dimensional Fredholm integral equations of the second kind
In the present work, a new stochastic algorithm is proposed to solve multiple dimensional Fredholm integral equations of the second kind. The solution of the integral equation is described by the Neumann series expansion. Each term of this expansion can be considered as an expectation which is approximated by a continuous Markov chain Monte Carlo method. An algorithm is proposed to sim...
متن کاملACMAC’s PrePrint Repository Monte Carlo Euler approximations of HJM term structure financial models
We present Monte Carlo-Euler methods for a weak approximation problem related to the Heath-Jarrow-Morton (HJM) term structure model, based on Itô stochastic differential equations in infinite dimensional spaces, and prove strong and weak error convergence estimates. The weak error estimates are based on stochastic flows and discrete dual backward problems, and they can be used to identify diffe...
متن کاملSimulation of Diffusions by Means of Importance Sampling Paradigm
The aim of this paper is to introduce a new Monte Carlo method based on importance sampling techniques for the simulation of stochastic differential equations. The main idea is here to combine random walk on squares or rectangles methods with importance sampling techniques. The first interest of this approach is that the weights can be easily computed from the density of the one-dimensional Bro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016